Determination of deoxyhemoglobin S polymer in sickle erythrocytes upon deoxygenation.

نویسندگان

  • C T Noguchi
  • D A Torchia
  • A N Schechter
چکیده

We have used 13C/1H magnetic double-resonance spectroscopy to measure the amount of sickle hemoglobin polymer within sickle erythrocytes as a function of oxygen saturation. We previously showed that the methods of cross-polarization and scalar decoupling could be used to measure accurately the polymer fraction in deoxygenated sickle hemoglobin solutions [Noguchi, C.T., Torchia, D.A. & Schechter, A.N. (1979) Proc. Natl. Acad. Sci. USA 76, 4936-4940]. Our measurements show that the amount of intracellular deoxyhemoglobin S polymer increases monotonically with decreasing oxygen saturation. Polymer can be detected at oxygen saturation values above 90%. This result can be theoretically explained by the excluded volume effect of the oxyhemoglobin S in the cell. The very high total intracellular hemoglobin concentration (34 g/dl) reduces the amount of soluble deoxyhemoglobin S to about 3 g/dl at 90% oxygen saturation. The agreement between theory and experiment indicates that the equilibrium properties of intracellular polymerization can be described by the analyses resulting from studies of concentrated sickle hemoglobin solutions. The curve for polymer formation as a function of oxygen saturation is roughly hyperbolic whereas that for cell sickling is sigmoidal; the difference is most apparent for measurements at pH 7.65. Intracellular polymer formation may in general have a different relationship to oxygen saturation than cell sickling and may be a more meaningful parameter of the pathophysiological process in sickle cell anemia than cell morphology. In addition, measurements of intracellular polymer should be useful in evaluating potential therapeutic agents.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Vanillin, a potential agent for the treatment of sickle cell anemia.

Vanillin, a food additive, has been evaluated as a potential agent to treat sickle cell anemia. Earlier studies indicated that vanillin had moderate antisickling activity when compared with other aldehydes. We have determined by high performance liquid chromatography that vanillin reacts covalently with sickle hemoglobin (HbS) both in solution and in intact red blood cells. Hemoscan oxygen equi...

متن کامل

The intracellular polymerization of sickle hemoglobin and its relevance to sickle cell disease.

In the last few years. the understanding of the molecular basis of sickle cell disease has progressed rapidly. It is now possible to describe the structure of the gel of polymerized deoxyhemoglobin S at molecular and atomic levels and to begin to understand the mechanism of formation of this gel from hemoglobin solutions. There are several current hypotheses for the pathophysiology of this dise...

متن کامل

Hypoxia Activates a Ca2+-Permeable Cation Conductance Sensitive to Carbon Monoxide and to GsMTx-4 in Human and Mouse Sickle Erythrocytes

BACKGROUND Deoxygenation of sickle erythrocytes activates a cation permeability of unknown molecular identity (Psickle), leading to elevated intracellular [Ca(2+)] ([Ca(2+)](i)) and subsequent activation of K(Ca) 3.1. The resulting erythrocyte volume decrease elevates intracellular hemoglobin S (HbSS) concentration, accelerates deoxygenation-induced HbSS polymerization, and increases the likeli...

متن کامل

Sickle-cell hemoglobin: fall in osmotic pressure upon deoxygenation.

Macromolecules such as hemoglobin exert both kinetic and matrix effects on osmotic pressure. The kinetic osmotic pressure of sickle-cell hemoglobin is lost upon deoxygenation at physiological erythrocyte concentrations. The non-kinetic or matrix component of osmotic pressure remains relatively unchanged. Loss of thermal-osmotic activity during deoxygenation occurs throughout a hemoglobin concen...

متن کامل

Hybrid erythrocytes for membrane studies in sickle cell disease.

A hybrid erythrocyte model for membrane studies in sickle cell disease has been developed. The model consists of normal red cell membranes containing hemoglobin S and sickle cell membranes containing hemoglobin A. In hybrids, complete hemoglobin exchange has been achieved together with restoration of low membrane permeability to potassium. Normal membranes containing HbS sickle upon deoxygenati...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 77 9  شماره 

صفحات  -

تاریخ انتشار 1980